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A solvable model for non- additive stochastic processes 
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Center for Studies in Statistical Mechanics, University of Texas at Austin, Austin, Texas 
78712. USA 

Received 25 May 1983, in final form 29 July 1983 

Abstract. An exactly solvable model is proposed for multiplicative stochastic processes. 

It has been pointed out that in externally driven systems the fluctuations of the 'pumping 
parameter' might play a very pronounced role when they depend on the specific state 
of the systems (Schenzle and Brand 1979, Horsthemke and Malek-Mansour 1976). 
Recently, in investigation of the pure death explosion process and the stochastic Schrogl 
model a so-called chemical explosion'regime has been introduced (Baras e? al 1982, 
Frankowitz and Nicolis 1983). The master equations studied for the chemical explosion 
regime can be approximated by differential equations, which are Fokker-Planck-type 
equations with non-constant diffusion coefficients. We think that the anomalous 
fluctuations due to the non-constant diffusion might be the origin of the regime. 

A solvable model for a class of multiplicative stochastic processes has been found 
and solved in Schenzle and Brand (1979). The generalised Langevin equation con- 
sidered there is 

x = a x  - x ' + y  + x[ (1) 

where the Gaussian random force satisfies (6 )  = 0 and (&) = Os( 7 )  and a and y are 
positive constants§. The time-dependent Fokker-Planck equation corresponding to 
the Langevin equation (1) is given by (Stratonovich 1963) 

p = ( a / a ~ ) { [ ~ " ~  - ( a  + & Q ) x ] p }  +;a( a2/dx2)( x 2 p ) .  (2) 
If we regard [ ( t )  as an ordinary function of time, equation (1) is the Bernoulli 

equation (Davis 1960), which can be reduced to a linear equation by means of the 
transformation z = x - ~ .  Here we extend the model to consider the Langevin equation 
(in the Stratonovich sense) 

x = ax + p x l + r  + (( a ' x  + p ' x l + Y ) .  (3) 
After making the transformation z = x-",  we find from equation (3) the Langevin 

equation for z (Arnold 1973) 

2 = - y ( a2 + p ) - y [ (  a ' z + p ') . (4) 

t On leave from the Institute of Theoretical Physics, Academia Sinica, Beijing, China. 
$ Supported in part by the Robert A Welch Foundation. 
5 This class of nonlinear stochastic models has been solved by a method of linear imbedding in Graham 
and Schenzle (1982); the long time decay constants have been discussed by Gardiner and Graham (1982). 
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Thus, the corresponding Fokker-Planck equation is 

a F / a t  = (a/az){[ y(  (YZ + p )  - $ a t Q y 2 (  a ’ ~  + p ’ ) ] @ }  +;Qr’(a’/dz’)[( a ’z  + p ’ ) ’ j ]  

~ ~ / ~ ~ ~ [ g ~ z ~ F 1 + ~ Q ( ~ * / ~ z 2 ) [ h ( z ) ~ 1  ( 5 )  

where 

F(z ,  t )  = - p ( ~ ,  t ) (dx/dz)= Y - ’ X ’ + ~ ~ ( X ,  t ) .  

(In writing equation (6) we have assumed y to be positive; for a negative y, we can 
choose F(z,  t )  = p ( x ,  t)(dx/dz).) 

It is easy to find the stationary solution to equation ( 5 )  

= N ( a I Z + p I ) - 2 u / O Y a ’ * - 1  exp[ -2( ap ’ - a ’p) /  Qya’*( a’z + p ’ ) ]  (7) 
where N ’  and N are the normalisation factors. To guarantee the existence of the 
stationary state, the parameters should satisfy some additional condition. 

Introducing 

q ( z ,  t )  = b ( Z ,  t ) / F s ( z ) ,  

a q / a t  = - g ( z )  aq /az+$Qh(z )  a2q/az2 

(8) 
from equation ( 5 )  we can derive the backward equation for q ( z ,  t )  

or 

aq/at=[(;a’*Qy*- p ) Z +  y ( a p ’ -  C U ’ ~ ) ]  aq /dZ+fQy2a t2Z2  a2q/aZ’ 

where in the last step we have set Z =  a ’z+p ’ .  

equation (9) 
By splitting off a time factor e-A‘, the eigenvalue equation can be obtained from 

d*cp/dZ*+(T/Z+A/Z*) dcp/dZ+(A/Z*)cp = O  (10) 
where 

2h A=---- 
Qya’’’ Qya‘* ’ Qy*a’’‘ 

2a 2( apt - a lp)  
r = i - -  A =  

Writing equation (10) in the form of the general confluent equation (Abramowitz 
and Stegun 1965) 

+ 2f’ + - bh’ - h ’ - 7) h” cp ’ + [ (F - h’ + y )  ($ + f ’ )  
h h h 

A(A-1)  +-+f”+f’L- 2Af’ 
ZZ Z h 

+ 
with f = 0 and h = A/Z, we obtain, for example, for positive a and y the eigenfunctions 
and eigenvalues for the discrete spectrum 

for integral n < a /  yQa”, (12a) 

(12b) 

= (-l)”n!z-”L‘-’ f1 “+““YA/Z)  (12c) 

A,, = n(1  -r-  n),  

cpn =Z-“ ,F,(-n,  -2n+2-r ,  A / Z )  
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and for the continuous spectrum when A >  [ a /  Y Q ~ ' ~ ] ~  SE p2 

p,,=Z"U(a, b,A/Z) 

where 

a =-p+i(A-p2) ' / ' ,  b = 1 + 2 i ( A - p 2 ) ' / 2 .  
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(13) 

Therefore, expanding the solution in terms of the eigenfunctions, finally we find 

(14) 

where the C,'s are expansion coefficients determined from the initial condition. To 
find C,, we need adjoint eigenfunctions, which can be obtained in a similar way. We 
will not discuss this here. 

When expression (7) is not normalisable, the backward equation will encounter 
difficulties. However, the form of the solution (14) suggests that we choose A = r- 2, 
f = A / Z  and h = A/Z to directly transform the eigenequation corresponding to equation 

I Z = U ' Z + p '  

exp(-A/Z) e-*n.'C,,p,,(Z) t p(x, t )  = x-l--Y Zr-2 I 

(6) 
Z2 d2p/dZ2 + [(2 - T)Z- A] d p / d Z +  ( A  + 2 - r ) ~  = 0 (15) 

into the general confluent equation ( l l ) ,  and then find the solution, which is still of 
the form of (14). In this case, it might be troublesome to find expansion coefficients. 

The model discussed includes the stochastic Verhulst equation (Goel et al 1971, 
Goel and Richter-Dyn 1974, Morita 1982) and the Suzuki-Kaneko-Sasagawa model 
(Suzuki et a1 (1980), but the solution of the FP equation is not given there) as particular 
cases. 

To close the paper, we show another particular case, i.e. that discussed in Schenzle 
and Brand (1979): p = -1, a' = 1 and p' = O .  In this case we have 

z = x - y ,  r = 1 - 2 a / Q y ,  A = 21 QY, A = 2A/ Q;, 

and hence, for example, from equation (14) 

p,(x) = xZa/O- '  exp(-2xYl YQ), 

A, = tQy2n(2a lQy-n )  = nyQ(a/Q-;ny), 

(P, = x-ny lF1(-n, -2n+1+2/yQ, 2xY/yQ). 

and from equation (12) 

All the results will be found to coincide with those obtained for the case in Schenzle 
a i d  Brand (1979). 
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